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Integrative analyses of major histocompatibility complex loci
in the genome-wide association studies of major depressive
disorder
Huijuan Li1,2, Hong Chang1, Xueqin Song3, Weipeng Liu1,2, Lingyi Li1, Lu Wang1, Yongfeng Yang4,5, Luwen Zhang4,5, Wenqiang Li4,5,
Yan Zhang4,5, Dong-Sheng Zhou6, Xingxing Li6, Chen Zhang7, Yiru Fang7, Yan Sun8,9, Jia-Pei Dai 8,9, Xiong-Jian Luo 1,2,10,
Yong-Gang Yao 1,2,11, Xiao Xiao1, Luxian Lv4,5,12 and Ming Li 1,2,11

Recent European genome-wide association studies (GWAS) have revealed strong statistical correlations between MDD and
numerous zero-to-high linked variants in the genomic region containing major histocompatibility complex (MHC) genes (MHC
region), but the underlying biological mechanisms are still unclear. To better understand the roles of this genomic region in the
neurobiology of MDD, we applied a convergent functional genomics approach to integrate GWAS data of MDD relevant biological
phenotypes, gene-expression analyses results obtained from brain samples, and genetic analyses of independent Chinese MDD
samples. We observed that independent MDD risk variants in the MHC region were also significantly associated with the relevant
biological phenotypes in the predicted directions, including the emotional and cognitive-related phenotypes. Gene-expression
analyses further revealed that mRNA expression levels of several MHC region genes in the human brain were associated with MDD
risk SNPs and diagnostic status. For instance, a brain-enriched gene ZNF603P consistently showed lower mRNA levels in the
individuals carrying MDD risk alleles and in MDD patients. Remarkably, we further found that independent MDD risk SNPs in the
MHC region likely converged to affect the mRNA level(s) of the same gene(s), and Europeans and Han Chinese populations have a
substantial shared genetic and molecular basis underlying MDD risk associations in the MHC region. These results highlighted
several potential pivotal genes at the MHC region in the pathogenesis of MDD. Their common impacts on multiple psychiatric
relevant phenotypes also implicated the neurological processes shared by different psychological processes, such as mood and/or
cognition, shedding lights on their potential biological mechanisms.

Neuropsychopharmacology (2019) 44:1552–1561; https://doi.org/10.1038/s41386-019-0346-3

INTRODUCTION
Major depressive disorder (MDD) is a chronic severe neuropsy-
chiatric illness whose worldwide lifetime prevalence was esti-
mated to be up to 13% [1]. Previous studies have revealed a
moderate (~37%) heritability of this illness [2], and genetic
approaches are thus presumed to be viable to find at least part
of the mechanisms for MDD pathogenesis. However, genetic
analyses of MDD, including recent genome-wide association study
(GWAS) [3–10], have earned less success than expected during the
last decade. Generally limited statistical power of small sample
sizes, population heterogeneity, and phenotypic complexity were
thought to restrict the detecting power of current MDD genetic
studies [11], and international collaboration projects by multiple

groups were therefore elicited to gain better insights. Indeed,
many novel risk loci have been reported through these large
collaborative studies, and the knowledge of genetic basis of MDD
has been significantly enriched [12–16].
While genetic analysis has provided essential information about

MDD pathogenesis, such results still remained difficult to integrate
and explain. Thanks to the accumulation of basic and clinical
studies of MDD, researchers have found that MDD patients often
exhibit a series of pathological alterations in their emotional and
cognitive abilities [17, 18]. In addition, impairment and dysfunc-
tion of certain brain regions engaged in processes for emotion
and cognition (the prefrontal cortex, hippocampus, etc.) [19, 20],
as well as dysregulated synaptic function and neuronal
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development in these brain areas [21–23], have been widely
reported in subjects affected by MDD. Despite the complicated
neurological mechanisms, phenotypic uncertainties, and hetero-
geneity of precipitating factors in MDD, these pathological
features observed in patients were thought to be at least partially
linked to genetic risk factors of this illness. In the past few years,
researchers have conducted multiple convergent functional
genomic studies [24–27] to test this hypothesis and have thereby
proven the involvement of multiple genetic loci in MDD (e.g.,
PCDH9, CREB1, and SLC6A15) [28–30]. Therefore, one main task for
researchers has been to examine whether MDD risk genes/variants
also affect the key aspects of the neurobiology of the illness.
Beyond the genetic analyses, recent advances suggest that
genetic variations (including noncoding variations) usually con-
tribute to complex diseases (e.g., MDD) via altering expression of
certain genes [31, 32]. Intriguingly, altered expression levels of
specific genes are also found to exert pivotal roles in the
pathogenesis of MDD [33–35]. For example, transcriptome
analyses of specific human brain regions have identified multiple
genes that are differentially expressed between MDD patients and
healthy controls [34]. We herein performed the current study to
further dissect the genetic and pathological basis of MDD via
analyzing the link between top MDD risk loci and/or the genes
and relevant pathological phenotypes.
In the latest GWAS of MDD (named PGC2 MDD GWAS) [16], the

genomic region containing major histocompatibility complex
(MHC) genes (the MHC region) has been one of the most
significant genomic regions associated with this illness. The MHC
molecules are the tissue–antigens necessary for the function of
immune cells, which can be classified as MHC class I (MHC-I), class-
II (MHC-II), and class III (MHC-III) molecules [36]. These molecules
play vital roles in the immune system and determine the host
histocompatibility as well as acquired immune responses [37].
Despite the well-known function of these molecules in the
immune system, they have not been extensively implicated in
psychiatric diseases until the application of GWAS [38]. Further-
more, in a recent study combining human brain transcriptome
analysis and mouse models, scientists reported the crucial roles of
C4A (encodes the acidic form of complement factor 4) in MHC
class III region in schizophrenia [39]. In addition to the recent
finding that the MHC region being one of the most significant
genomic regions associated with MDD [16], a recent fine-mapping
analysis through imputing HLA alleles and C4 haplotypes also
indicated that the observed association signal at MHC in MDD
were unlikely arising from HLA alleles or C4 haplotypes, providing
other possibilities that the MDD risk signal derived from additional
genes at MHC [40].
Nevertheless, there are still several unanswered questions: (1)

despite high linkage disequilibrium (LD) and gene density in the
MHC region, what is the exact LD structure of risk associations? (2)
Are the MDD risk SNPs also associated with any of the relevant
biological phenotypes? (3) Are there any functional consequences

caused by the MDD risk alleles? (4) Are the mRNA levels of MHC
genes altered in MDD patients? (5) Can the MDD risk SNPs in PGC2
GWAS [16] be replicated across different populations? Based on
the theory of convergent functional genomics [24–27], gene(s)
significantly associated with multiple MDD relevant phenotypes
and aberrantly expressed in patients is likely an authentic
susceptibility gene. We therefore performed careful examination
of the risk loci in MHC regions in diverse GWAS resources and
expression datasets, and carried out replication analyses in distinct
populations. This integrative analyses highlighted several genes in
the MHC region (but not limited to them) deserving further
investigations.

MATERIALS AND METHODS
All the protocols and methods were approved by the institutional
review board of the Kunming Institute of Zoology, Chinese
Academy of Sciences and the ethics committees of all participat-
ing hospitals and universities. The full descriptions about the
materials and methods were shown in Supplementary Materials.
The sequence of this hypothesis-driven integrative analysis is
summarized in Fig. 1.

Descriptions of PGC2 MDD GWAS sample
The primary MDD statistical data in Europeans were from a recent
PGC2 GWAS [16] of 135,458 MDD cases and 344,901 controls,
including PGC29 cohort and six expanded samples (deCODE,
Generation Scotland, GERA, iPSYCH, UK Biobank, and 23andMe).
The 23andMe data (75,607 cases and 231,747 controls) were not
publicly released, therefore the statistical results of 59,851 MDD
cases and 113,154 controls were utilized in the present study.
Detailed information about the cohorts, genotyping, and quality
control, as well as statistical methods can be found in the original
GWAS report [16]. For the threshold of association significance
with MDD, we empirically defined a p-value < 5.00 × 10−8 to be
genome-wide statistically significant.

LD analysis of MHC SNPs
A total of 83,279 SNPs in the MHC genomic region (chr6:26Mb-
34Mb) were covered in the PGC2 MDD GWAS [16]. We examined
the linkage disequilibrium (LD) pattern of MDD risk SNPs in the
MHC region using genotype data from European individuals (N=
503) in 1000 Genomes Project [41], and calculated the tagging
SNPs based on the tagger procedure implemented in Haploview
(pairwise tagging only, r2 threshold= 0.6) [42]. The LD structure of
the tagging SNPs was constructed using r2 algorithm implemen-
ted in the Haploview program [42] and the online tool SHEsis
(http://analysis.bio-x.cn/) [43, 44].

Analyses on MDD-related biological phenotypes
The 83,279 MHC SNPs were aligned to the other GWAS datasets of
related biological phenotypes, such as neuroticism [45], depressed
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Fig. 1 Overview of research strategy and study design. The study focused the recently reported genome-wide significant SNPs for MDD in the
MHC region, examining their associations with the relevant biological phenotypes in human populations, and independent replications of
clinical associations with MDD across populations. The gene mRNA expression in the MHC region were then tested for their associations with
the MDD genetic risk SNPs and diagnostic status. This integrative analyses identified a set of MHC SNPs and genes showing consistent
associations with the illness and biological phenotypes
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affect and worry [45], cognitive performance [46],
verbal–numerical reasoning [47], intelligence [48], depressive
symptoms [45], and subjective well-being [49]. After alignment,
a total of 73,733 SNPs remained for further analyses, of which 581
SNPs were genome-wide significantly associated with MDD in the
PGC2 GWAS [16]. For the definitions of association significance
threshold with these biological phenotypes, since we are primarily
interested in whether the MDD genome-wide risk SNPs (N= 581)
affected the biological phenotypes, and a total of eight
phenotypes were examined, we therefore set a p-value of 0.05/
581/8≈1.08 × 10−5 as region-wide significance (we did not
consider LD relationship among the 581 SNPs during the
definitions of significance; thus a p-value of 1.08 × 10−5 was more
stringent than expected), and a p-value < 0.05 was considered
nominally significant. Detailed information about the related
biological phenotypes can be found in the Supplementary
Materials.

Expression quantitative trait loci (eQTL) analysis in human brains
in public datasets and our own Han Chinese sample
To identify the functional consequences associated with the MDD
risk alleles within the MHC region, we examined the effects of
index SNPs on the variations of primarily MHC gene-expression
levels in human brains using two public eQTL datasets: (1)
BrainSeq [50] and (2) Genotype-Tissue Expression project (GTEx)
[51]. Detailed descriptions of the two brain eQTL datasets can be
found in the Supplementary Materials.
We also collected amygdala tissues of 65 non-psychiatric

controls from the Chinese Brain Bank Center. The total RNA was
extracted from these samples, and the reverse transcription
reaction was conducted to synthesize cDNA using a first-strand
cDNA synthesis kit (K1612, ThermoFisher Scientific, USA) accord-
ing to the manufacturer’s protocol. The quantitative real-time PCR
was then performed on a 7900HT Fast Real-Time PCR System
(Applied Biosystems, USA), with a reaction mixture of 10.0 μL 2 ×
SYBR master mix (Roche, USA), 2.0 μL of primers (10 μM), 1.0 μL of
cDNA, and 7.0 μL of nuclease-free water for each sample. The
relative gene expression was presented as the means of –ΔCt for a
statistical test against genotypic groups [52]. The sequences of
primers used for amplification of RPS13 were 5′-CCCCACTTGGT
TGAAGTTGA-3′ (forward) and 5′-CTTGTGCAACACCATGTGAA-3′
(reverse); sequences of primers for BTN3A2 were 5′-GTCCAGTGAG
ATAGAAAGTGAGCA-3′ (forward) and 5′-TTATTGGTATCGGACGAAG
ACTC-3′ (reverse); and sequences of primers for ZNF603P were 5′-
CCCTGTTGGTCTGAAGAAGATAGTA-3′ (forward) and 5′-CTACGTTC
ATAATGGTGCTGCTC-3′ (reverse).

Diagnostic analysis of MHC gene expression in brains
We downloaded the raw RNA-seq data (fastq files) from two
independent Gene Expression Omnibus (GEO) datasets. The first
GEO dataset (GSE102556) included human postmortem brain
dorsolateral PFC (BA8/9) tissues from 26 MDD cases and 22
matched controls from the Douglas Bell Canada Brain Bank
(DBCBQ; Douglas Mental Health Institute, Verdun, Québec) [34].
The second GEO dataset (GSE101521) consisted of brain tissues
from 30 DSM-IV MDD cases and 29 controls collected at The
Division of Molecular Imaging and Neuropathology, New York
State Psychiatric Institute and Columbia University [35]. In both
datasets, quality control, alignment, and gene-expression quanti-
fication were conducted using the same standard as described in
the Supplementary Materials. We quantified gene-level expression
based on known genes of Ensembl build GRCh38.91 using
featureCounts [53], and FPKM (fragments per kilobase of exon
per million fragments mapped) was calculated to measure gene-
level expression.
For each differential expression analysis, a mean gene FPKM

value of 0.001 across all samples was used as the minimum
threshold for inclusion. Principal components (PCs) were

calculated using the transformed FPKM (log2 with an offset of 1)
in the genome, and the first 10 PCs were used as covariates in the
following diagnostic analyses. Statistical analyses of mRNA
expression associated with diagnosis were conducted in R 3.4.2
using the linear regression model, treating log2-transformed
expression levels of FPKM as the outcome, and covaried for top
10 expression PCs. In the datasets utilized in the present study, the
top 10 PCs were significantly associated with sex, age, pH, RNA
integrity number (RIN), and postmortem interval (PMI) (Figure S1).

Descriptions of Han Chinese MDD case-control samples
CONVERGE GWAS sample. Data of 5303 MDD patients and 5337
non-psychiatric controls from Han Chinese population were
retrieved from the CONVERGE GWAS dataset [15]. Cases were
diagnosed using the Composite International Diagnostic Interview
(WHO lifetime version 2.1; Chinese version) according to the DSM-
IV criteria. Controls were recruited either from local communities
or from the patients who underwent minor surgical procedures at
the general hospitals.

Chinese replication sample. This sample contained 1789 MDD
cases and 2464 controls of Chinese ancestry. All patients were
diagnosed with MDD strictly according to the DSM-IV criteria via
standard diagnostic assessments, supplemented with clinical
information through thorough review of medical records and
interview with family informants. Control subjects were mentally
healthy local volunteers. All participants provided written
informed consents.

Meta-analysis of MHC SNPs with MDD in Han Chinese
For genetic analyses, we performed logistic regression analyses to
test the association between SNP dosages and the risk of MDD in
the case-control samples (CONVERGE GWAS and the Chinese MDD
replication sample). To conduct the meta-analysis, values of odds
ratio (OR) and standard error (SE) of each sample were retrieved to
calculate inter-sample heterogeneity, total pooled OR, and the
overall 95% confidence interval (CI). A p-value < 0.05 was
considered nominally significant.

RESULTS
LD analysis of the MDD risk SNPs in the MHC region
As described in the Materials and Methods, a total of 73,733 SNPs
within the MHC region were selected for the analyses. We first
plotted the association results of these 73,733 SNPs with MDD
using the LocusZoom program in Figure S1 [54]. To depict a more
intuitive MDD risk association pattern for the MHC region, we also
made the plot using SNPs with p-value lower than 0.001 (Fig. 2). In
brief, among the 73,733 SNPs in the MHC region, 581 SNPs
showed genome-wide significant associations with MDD in the
PGC2 GWAS (p < 5.00 × 10−8) [16]. The LD pattern of these 581
genome-wide risk SNPs varied substantially in Europeans, we thus
calculated the tagging SNPs (using pairwise tagging only with r2

threshold= 0.6) in European individuals of 1000 Genomes Project
(N= 503) [41] using the Haploview software [42], and chose nine
tagging SNPs for subsequent analysis. These nine tagging SNPs
have encompassed a large genomic region, and were in weak-to-
moderate LD with each other (0.000 ≤ r2 ≤ 0.497, Figure S3 and
Table S1).

The independent MDD risk alleles in the MHC region were
associated with worse cognitive functions
Aberrant cognitive functions have been repeatedly observed in
MDD patients compared with healthy controls [18], and we thus
hypothesized that SNPs associated with the risk of MDD should
also affect cognitive abilities. By examining these SNPs in a large-
scale GWAS of cognitive performance (N= 257,828), we found
that independent MDD risk SNPs were region-wide significantly

Integrative analyses of major histocompatibility complex loci in the. . .
H Li et al.

1554

Neuropsychopharmacology (2019) 44:1552 – 1561



associated with cognitive performance (Table 1) [46]. We also
ensured that such association signals were not due to the LD
signal from one particular tagging SNP. For example, rs1936365
and rs9379871, two SNPs in negligible LD in Europeans (r2= 0.003,
locates 1.89 Mb far between them) with genome-wide associa-
tions with MDD (rs1936365, p= 3.86 × 10−11; rs9379871, p=
1.24 × 10−8; Table 1), were both significantly associated with
cognitive performance (rs1936365, p= 2.68 × 10−11; rs9379871, p
= 1.79 × 10−13; Table 1), and their MDD risk alleles both predicted
impaired cognitive performance.
In the GWAS samples of VNR (N= 168,033) [47], most of the

MDD risk MHC SNPs were also significantly associated with VNR in
the expected directionality (Table 1). In another GWAS of
intelligence (N= 269,867) [48], most of the MDD genome-wide
risk SNPs were again nominally or region-wide significantly
associated with intelligence (Table 1). These series of analyses
are in agreement with a previous study [55], in which the authors
identified a schizophrenia risk SNP rs6904071 in the MHC region
showing association with cognitive performance (i.e., episodic

memory) and hippocampal volume. Notably, rs6904071 was also
genome-wide significantly associated with MDD in the PGC2
GWAS (p= 8.21 × 10−9) [16]. Taken together, although we cannot
preclude the possibility that there are substantial overlap in the
samples of these GWAS on cognition-related phenotypes, the
consistent data could still provide strong evidence that MDD risk
SNPs in the MHC region likely also affected cognitive functions.

The MHC MDD SNPs were correlated with neuroticism, depressed
affect, worry, depressive symptoms, and subjective well-being
Neuroticism is a predictive factor that is strongly associated with
the onset of MDD [56, 57]. Several GWAS of neuroticism also
reported shared genetic components between neuroticism and
various psychiatric illnesses, including MDD [49, 58, 59]. Here, we
utilized a recently published GWAS resource (N= 390,278) [45]
and observed strong associations between neuroticism and MDD
risk SNPs, such as rs6904596 and rs9257803 (p= 5.17 × 10−7 and
2.78 × 10−5, respectively; r2= 0.001 and locates 1.85 Mb far
between them, Table 1). More intriguingly, carriers of the MDD
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risk alleles at all SNPs tended to show increased vulnerable
personality traits compared with the protective allele carriers
(Table 1). In addition, we further examined the associations of
those MHC tagging SNPs with depressed affect (N= 357,957) and
worry (N= 348,219), the two sub-clusters that derived from
neuroticism items in a recent GWAS in the UKB cohort [45].
Intriguingly, the MHC tagging SNPs were also significantly
associated with both depressed affect and worry sub-clusters in
the predicted directions (Table 1), even though the two
neuroticism-related sub-clusters were genetically distinguishable
[60]. These results suggested that the MHC region might affect the
shared neurological basis underlying both psychological traits.
The associations between MDD risk SNPs in the MHC region and

depressive symptoms (N= 381,455) [45] further strengthened the
link between these SNPs and the illness, as most of the tested
SNPs were nominally or region-wide significantly associated with
depressive symptoms in the expected directions (Table 1).
However, it should be noted that the samples used for depressive
symptoms [45] had substantial overlap with that in the PGC2 MDD
GWAS [16], although the depressive symptom GWAS used a
continuous phenotype rather than a binary status for analyses in
part of the samples (i.e., UKB).
We also tested the associations between the MDD risk SNPs in

the MHC region and subjective well-being, a phenotype
genetically correlated with both MDD and neuroticism [49]. Using
the statistics of 298,420 individuals in a recent GWAS of subjective
well-being [49], we found that only five of the nine tagging SNPs
(or their LD index SNPs) in the MHC region were included in this
GWAS, and four of them were nominally or region-wide
significantly associated with subjective well-being (Table 1), with
the lowest p-value of 6.31 × 10−6 for rs6904596. Also, the MDD risk
alleles at these four SNPs predicted worse subjective well-being
(Table 1).

Associations of MHC risk SNPs with gene expression in brains
As discussed, there are many low-to-high LD SNPs linked to MDD
spanning a large genomic region in the MHC region. Since an
effective strategy to understand the underlying molecular
mechanisms of these genetic risk signals is to perform the eQTL
analyses [61], we examined the associations between the MDD
risk SNPs and mRNA expression levels of nearby genes using RNA-
seq results of DLPFC from the BrainSeq dataset (N= 273 healthy
individuals) [50]. In these series of eQTL analyses, to maximally
capture the genes of expression showing associations with
genetic risk, we investigated all abovementioned 581 genome-
wide MDD risk SNPs. We identified 426 pairs of significant SNP-
gene eQTL associations in the BrainSeq sample (FDR-corrected p-
value < 0.1, Table S2), and 284 pairs of them were also nominally
significant in the GTEx dataset of frontal cortex (BA9) tissues
(Table S2) [51] with the same directions of allelic effects (p < 0.05,
Table S2). The significant eQTL genes of risk SNPs in both datasets
included BTN3A2, HCG17, HCG4P3, HLA-C, PSORS1C1, VARS2,
ZKSCAN3, ZNF192P1, ZNF192P2, ZNF602P, ZNF603P, ZSCAN26, and
ZSCAN31 (Table S2). Intriguingly, convergent eQTL associations of
independent tagging SNPs with the same gene expression were
frequently observed (Table S2). For example, rs6940116 and
rs1936365, though in low LD (r2= 0.006, locates 559.72 Kb far
between them), both indicated higher expression of ZNF602P
corresponding to their MDD risk alleles (Figure S4); moreover,
both of their risk alleles pointed to lower mRNA levels of ZNF603P
(Figure S4). We also found that many MDD risk SNPs were eQTLs
of multiple genes in the brain, for instance, in addition to ZNF602P
and ZNF603P, rs1936365 was also significantly associated with the
mRNA expression of other genes (ZKSCAN3 and ZSCAN26), and the
MDD risk alleles were associated with either higher (ZNF602P,
ZKSCAN3, and ZSCAN26) or lower (ZNF603P) gene expression in the
brain (Table S2).

The convergent eQTL associations of independent SNPs (e.g.,
rs6940116 and rs1936365) with the same gene(s) might suggest
convergence of the pathway(s) or molecular mechanisms under-
lying their roles in the genetic risk of MDD. Besides, the opposite
directions of eQTL associations of the risk allele at one SNP (e.g.,
rs1936365) on multiple genes suggested potential pleiotropic
effects of this genomic locus and highlighted the existence of
potentially complicated regulatory element(s), resulting in such
varied eQTL effects. Nevertheless, it is also possible that the eQTL
SNPs (e.g., rs1936365) might be in substantial LD with multiple
independent causative variants, and the currently observed
variable eQTL associations with different genes were the
reflections of functional consequences attributed to different
causative variants.

European and Han Chinese populations shared risk SNPs and
molecular basis at MHC region
Owning to the differences in demographic histories and genomic
structures between distinct continental populations, replicative
analyses of some authentic disease risk SNPs across different
populations don’t always return positive results [62, 63]. Previous
analyses have revealed intensive impact of natural selection on
the MHC genomic region during human evolution, probably due
to their central roles in the immune system [64, 65], we therefore
sought to understand if the PGC2 (comprising of Europeans) MDD
risk SNPs in the MHC region conferred risk of the illness in
common world populations or solely in the Europeans.
We firstly examined the statistical associations of the 581 PGC2

MDD genome-wide risk SNPs in the MHC region in the CONVERGE
GWAS of Han Chinese populations (consisting of 5303 cases and
5337 controls) [15]. Not surprisingly, 424 of the tested SNPs were
not included in the Han Chinese CONVERGE GWAS (Table S3),
likely due to their monomorphic status in this distinct population.
For the 157 remaining SNPs, 66 of them were nominally
associated with MDD in CONVERGE GWAS in the consistent
directions (p < 0.05, Table S3), which primarily included two
independent tagging SNPs (rs9379871 and rs9257803, r2= 0.001
in Europeans and Han Chinese, respectively) and their linked SNPs
(e.g., rs9379871, p= 0.0109; rs9257803, p= 0.00387; Table 2).
However, one of the leading SNPs (rs1936365) in PGC2 GWAS was
not associated with MDD in the CONVERGE GWAS (p= 0.364),
likely reflecting the heterogeneity of the MHC loci between
continental populations. In addition, we also noticed the SNP
rs9262201, which did not reach genome-wide significance in the
PGC2 MDD GWAS (p= 8.65 × 10−8) [16], was nominally associated
with MDD in the CONVERGE GWAS (p= 0.0357; Table 2) [15], and
its directions of allelic effects were the same in both datasets. LD
analysis showed that rs9262201 was in low LD with rs9379871 and
rs9257803 in either Europeans or Han Chinese (all r2 ≤ 0.005,
Table S4). We then performed further replication analyses of the
three SNPs (rs9379871, rs9257803, and rs9262201) in an
independent Han Chinese sample (including 1789 cases and
2464 controls), and two of the three SNPs were again nominally
associated with MDD in consistent allelic directions (rs9257803, p
= 0.00231; rs9262201, p= 0.0351; Table 2). Meta-analysis of the
two Han Chinese samples also found that all these three SNPs
were significantly associated with MDD in this European-divergent
population (rs9379871, p= 0.0478; rs9257803, p= 0.000139;
rs9262201, p= 0.0101; Table 2).
These three MDD risk SNPs are located in the noncoding

regions, and their functionalities are still unknown. We thus
applied the plausible approach, eQTL analysis [32], to investigate
their potential physiological impacts. Intriguingly, two of the three
risk SNPs displayed eQTL effects in brains. The strongest eQTL
association appeared between BTN3A2 and rs9379871 (p= 4.79 ×
10−16 in the DLPFC of BrainSeq and p= 4.20 × 10−13 in the frontal
cortex of GTEx, Figure S5), and subjects carrying the risk allele [C]
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of rs9379871 showed an increase of BTN3A2 mRNA levels in the
peripheral blood, indicating that higher expression levels of this
gene might be a risk factor for MDD. Since rs9379871 was also
associated with MDD in the Han Chinese population, we then
investigated the association between this SNP and BTN3A2
expression in the amygdala tissues (N= 65) collected from Han
Chinese donors. Again, the risk allele [C] of rs9379871 predicted a
higher mRNA expression level of BTN3A2 (p= 0.0002, Figure S6).
There was another SNP rs9262201 showing association with MDD
in both Europeans and Han Chinese, and exhibited significant
eQTL associations with HCG20 mRNA expression in the BrainSeq
and GTEx datasets (p= 1.19 × 10−7 in the DLPFC of BrainSeq and
p= 5.10 × 10−4 in the frontal cortex of GTEx, Figure S5). The MDD
risk allele [A] at rs9262201 was associated with a higher expression
level of HCG20 in both datasets. Since the expression levels of
HCG20 in brains were relatively low and thus undetectable using
our quantitative real-time PCR (qRT-PCR) method, we were not
able to test the associations between rs9262201 and HCG20
expression in our Han Chinese amygdala tissues. Nevertheless,
these results suggested potential common molecular genetic
basis of MDD associations in the MHC region shared by Europeans
and Han Chinese, i.e., increased expression of BTN3A2 are likely
risk factors for MDD in both ethnic groups.

The mRNA expression of a brain-enriched gene ZNF603P was
associated with MDD diagnosis status and genetic risk
To gain further insights into the potential pathophysiological roles
of genes in the MHC region in MDD, we assessed the effects of

diagnostic status on mRNA expression patterns in human brains.
We re-analyzed the raw RNA-seq data from two independent
cohorts of European ancestry [34, 35], and quantified the gene-
expression level changes in MDD patients by covaring expression
heterogeneity using PCA analysis. Considering the relatively small
sizes of these two samples (GSE102556: 26 MDD cases and 22
controls [34]; GSE101521: 30 MDD cases and 29 controls [35]), we
conducted a meta-analysis using their summary statistics (Beta
and SE). In this meta-analysis, 11 MHC genes showed nominally
differential expression levels between cases and controls (p < 0.05,
Table S5). Although none of these genes survived multiple
corrections according to the number of genes in the MHC regions
(which might be due to the limited statistical power of the small
sample size), they showed the same direction of diagnostic effects
in both datasets. Some of these genes, based on previous findings,
worth further attention. For example, ZSCAN31, which has been
reported to show lower expression levels in schizophrenia cases
compared with controls [66], was also downregulated in MDD
patients compared with healthy subjects in our analysis (p=
0.0214, Table S5), and the MDD risk allele was associated with
decreased expression of ZSCAN31 in the eQTL analysis of BrainSeq
and GTEx datasets (the bottom line of Table S2).
In addition to ZSCAN31, ZNF603P was decreased in MDD cases

compared with controls (p= 0.0332). This gene was also high-
lighted in the earlier eQTL analyses (it showed significant
associations with multiple MDD risk alleles), and both the eQTL
analysis and diagnosis analysis exhibited the same directions
(Fig. 3), i.e., if the gene was downregulated in MDD patients
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Table 2. Associations of independent MHC SNPs with MDD in distinct populations

SNP Position LD with
rs9379871

Allele Freq in
Europeans

Freq in
Chinese

PGC2 GWAS [16]
(59,851/113,154)a

CONVERGE
GWAS [15]
(5303/5337)a

Chinese
Replicationb

(1789/2464)a

Meta-analysis in
Chinese

OR P-value OR P-value OR P-value OR P-value

rs9379871 26375854 / C/G 0.888 0.937 1.072 1.24×10−8 1.127 0.0109 1.005 0.954 1.091 0.0478

rs9257803 29344395 0.001 T/C 0.095 0.049 0.932 1.03×10−8 0.822 0.00387 0.698 0.00231 0.784 0.000139

rs9262201 30760886 0.001 A/G 0.780 0.874 1.052 8.65×10−8 1.085 0.0357 1.156 0.0351 1.108 0.0101

LD linkage disequilibrium, Allele effect allele/non-effect allele, OR odds ratio, Freq frequency of effect allele
aThe sample size in bracket is shown as MDD cases/normal controls
b
“Chinese Replication” means our collected further replication samples from Han Chinese population, which is independent from CONVERGE GWAS [15]
The “Meta-analysis in Chinese” is calculated based on the OR and standard error (SE) from CONVERGE GWAS [15] and our collected Chinese replication sample
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compared with healthy controls (e.g., ZNF603P, p= 0.0332 in
Table S5), the linked MDD risk alleles also pointed to a lower
mRNA expression level of this gene in the eQTL analysis (e.g., the
eQTL association between rs1936365 and ZNF603P was p= 4.86 ×
10−11, Table S2). Therefore, ZNF603P is likely a susceptibility gene
for MDD at least in Europeans. To identify if this gene also confers
risk of MDD in Han Chinese, we measured the mRNA levels of this
gene in our Han Chinese amygdala samples using qRT-PCR. Of
note, we observed the eQTL associations between rs1936365 and
ZNF603P expression in Han Chinese (p= 0.00744, Table S6) in the
same direction of allelic effects as that in Europeans, suggesting it
is a common eQTL variant in both populations. However,
rs1936365 was not associated with MDD in the Han Chinese
CONVERGE GWAS (p= 0.364, Table S4). We also conducted
genome-wide SNP array analysis using Illumina GSA platforms in
a subset of our Han Chinese amygdala samples (N= 59) followed
by high-quality imputation. This analysis yielded a total of 57,423
SNPs within the MHC region (chr6:26-34 M) passing quality control
(INFO > 0.8, call rate > 0.95). A linear regression analysis of these
SNPs against ZNF603P expression identified multiple significant
eQTL SNPs, but none of them were associated with MDD in the
Han Chinese CONVERGE GWAS (Table S6). Therefore, based on the
existing data, we cannot conclude that ZNF603P is a risk gene for
MDD in Han Chinese, and further analyses are necessary.
The function of ZNF603P in brain is still unclear. It was proposed

to be a pseudogene belonging to the lncRNA class. However, the
mRNA levels of ZNF603P in different brain tissues, as presented in
the two MDD RNA-seq datasets [34, 35], are moderate (average
FPKM ≥ 3.00). Moreover, using the RNA-seq data from diverse
human tissues included in the GTEx dataset [51], we found that
ZNF603P was preferably expressed in several brain regions known
to participate in cognitive processes and frequently implicated in
the neuropathology of MDD (such as the frontal cortex (BA9)),
while the mRNA expression levels of ZNF603P in peripheral tissues
were relatively low (the expression profile in diverse tissues is
shown in Figure S7). Therefore, ZNF603P likely exerts pivotal but
unidentified functions in brains and further study characterizing
its function is needed.

DISCUSSION
The advancements in genetic techniques and large-scale interna-
tional collaboration have greatly improved our understanding of
the neurobiology of MDD [67]. To delve into the genetic and
physiological basis of MDD, we have explored the MHC region
genetic variants showing genome-wide significant associations
with this illness in several GWAS datasets of MDD-relevant
phenotypes, and presented convergent and consistent lines of
evidence suggesting that several MHC region genes are risk
factors for MDD. Although the results for most of these SNPs in
MDD-related phenotypes did not reach genome-wide level of
significance, the consistent findings across different analyses that
the MDD risk alleles all pointed to abnormalities linked to the
disease strongly supported the reliability of the study.
We also attempted to obtain a broader view in the search for

potential causal variants via performing the trans-ethnic replica-
tion analysis of the European MDD risk SNPs in Han Chinese
individuals, as leveraging variations in the LD structure across
groups with different genetic backgrounds was proposed to be
helpful to achieve this goal [30, 68–70]. Although this method
could miss certain risk loci restricted to a particular population,
common risk loci in the general world populations are likely
detected with greater efficiency. However, as mentioned earlier,
the MHC region is a target of natural selection during human
evolution, and it is unclear whether human evolution has any
impact on the genetic risk associations with MDD. Indeed, among
the hundreds of genome-wide risk variants in Europeans, only
three independent SNPs were also nominally associated with MDD

in two independent Han Chinese samples (Table 2). We then
calculated the integrated haplotype score (iHS) of MHC SNPs using
genotype data from 1000 Genomes Project [41] with Selscan [71,
72], which could reflect recent positive selection during human
evolution. Intriguingly, a substantial portion of the MDD genome-
wide risk SNPs underwent positive selection in Africans or
Europeans (The criteria for SNP under positive selection should
have |iHS| > 1.96, which empirically corresponds to the most
extreme 5% of iHS values across the genome with minor allele
frequency > 0.05), while few of them showed signature of natural
selection in East Asians (Table S7 and Figure S8). These preliminary
results suggested distinct effects of natural selection on the MHC
variants in divergent populations, which may eventually influence
the genetic risk architectures of complex disorders, such as MDD.
This observation is also in line with our LD analysis results of the
581 genome-wide risk SNPs in Europeans and in Han Chinese, in
which we observed sharp differences in LD structures of the MHC
region between these two populations (Figure S9). Therefore,
there are likely both common and population-specific genetic risk
variants for MDD within the MHC region.
Taken one step further, we utilized the public RNA-seq

resources to examine the expression patterns of MHC region
genes in MDD patients and controls, as well as their associations
with the MDD risk SNPs in this genomic region. These series of
analyses have identified a brain-enriched gene ZNF603P showing
consistent patterns of allelic and diagnostic associations. For this
gene, the MDD risk genotypes and diagnostic status predicted the
same direction of gene-expression levels in brains, indicating that
aberrant transcriptional regulation of ZNF603P was likely corre-
lated to the mechanisms underlying the genetic risk associations
of the MHC region variants. These results corroborate the
contention that complex disease GWAS loci usually exert effects
via altering gene-expression levels in relevant tissues [31, 32, 61, 73].
While their roles in the pathogenesis of MDD are still unclear, a
possible explanation is that those genes contribute to the immune
dysfunction in MDD [74, 75]. Nevertheless, the hypothesis that
MDD is in part attributed to immune dysfunction still remains to
be tested, as Glanville et al. reported that C4 haplotypes or HLA
alleles, which play a major role in the susceptibility to autoimmune
diseases, were not associated with the risk of MDD [40]. This
contention appears to be in line with our results. However, given
the substantial overlap between the samples used in their and our
studies, further investigation into this and other hypothesized
etiologic mechanisms underlying the genetic risk of MDD
conferred by the MHC region variants should be performed.
Despite these intriguing findings, there are also limitations

calling for precautions and further investigations. For example, if
the strength of the present study is the comprehensive
integration of publicly available databases, a major weakness will
be the lack of functional validations of the risk genes, which
should be carried out in the future. In addition, although we have
reported a set of susceptibility genes in the MHC region, we
believe that there are still other susceptibility genes involved in
the risk of MDD yet to be identified given the high density of
genes in this genomic region. Third, it is well-characterized that
there are many genes belonging to the same family in the MHC
region, especially the genes encoding the HLA class I heavy-chain
paralogs (e.g., HLA-A, HLA-B, HLA-C). While these genes may share
the same DNA sequence elements, they could also result in the
misalignment during RNA-seq results analyses, in which event
false positive or negative results in identifying those homologous
genes may occur [76]. While we are cautious in the interpretations
of the currently available data, we believe that the best solution to
this problem is to apply the long reads sequencing methods such
as PacBio. Additionally, we also realized that the genotyping
platforms and quality control standards are different between
datasets, which may result in missing of certain SNPs and even the
incomplete overall picture of the MHC associations. Meanwhile,
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we replicated the eQTL associations of both BTN3A2 and ZNF603P
expression in our Han Chinese amygdala sample using qRT-PCR,
whereas the European eQTL datasets used RNA-seq analysis; also,
we were not able to detect HCG20 expression using qRT-PCR in
our sample, it is thus necessary to examine the variation resulted
from different gene-expression quantification techniques. It is also
important to note that MDD is a complex illness with strong
phenotypic heterogeneity during clinical diagnosis. Although we
have excluded certain individuals affected by known confounding
factors, we cannot rule out the possibility that the remaining MDD
patients are still heterogeneous. For example, most cases included
in the current study were recurrent MDD patients, and thus have
received antidepressant therapeutics. We therefore cannot
exclude the confounding effects of antidepressant therapeutics
on the risk association signals between MDD and MHC region
variants, as certain genes at MHC region might be targets of
antidepressant therapeutics. Further analyses either considering
antidepressant therapeutics as covariates or stratify patients
according to their responses to antidepressant therapeutics
should be carried out. Finally, although we found the independent
MHC SNPs are associated with the same gene(s) expression, and
this might suggest convergence of the pathway(s) or molecular
mechanisms underlying independent genetic risk; however, it is
also possible that the independent MHC SNPs are both in
substantial LD with the same causative or regulative variant(s).
In such cases, the observed eQTL associations of independent
SNPs with the same genes should not be considered as evidence
of convergent signal, but were the reflections of functional
consequences attributed to the causative variants.
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